The sun method just described uses several approximations and also calls for changing course to make the checks. Often we are underway and just need to be sure the compass is right on our present heading, and then we will worry about other headings when we can. This comes up, for example, in an ocean yacht race, where some doubt about the steering compass might arise because the electronic heading sensors are reporting other headings; in a race you do not want to stop and swing the ship.
But we do not have to. Here is a quick and easy solution that you can use in the ocean or in your local lake. We are relying now on celestial navigation in a sense, but we do not need any of the details if we are on land and have access to the Internet. We just assume if you are in the ocean, you have the full tools to solve this with conventional cel nav methods.
We start with the measurement of Figure 12.9-1 where we learned that the compass bearing to the sun was 135 C when the vessel was headed 000 C. Note that this heading does not matter for this application. We just happen to have a nice picture with the compass in that direction. For this method, you measure the sun bearing on whatever heading you happen to be on.
But we do now need more information. We need to know the time accurate to within a minute or so, and we need to know our location. Both you can get from the GPS. Now we need to look up or compute what the true bearing of the sun was at this moment based on cel nav principles, or we just go online and look it up.
Go the starpath.com/usno for a quick link to the right place at the US Naval Observatory. Then type in the time of the bearing and your Lat-Lon. As example is in Figure 12.9-2, which assumes we were headed north in Chesapeake Bay on Oct 14, 2013, and we recorded the bearing at 0930 EDT, which is 1330 UTC. The true bearing to the sun at the time was 123.5º.
Next we need the local magnetic variation which we could get from a chart, but for this type of precise compass check we might want to go back online and get the most accurate and up to date value. This you find at the National Geodetic Center (ngdc.noaa.gov/geomag/geomag.shtml) for specific times and locations. For our example time and location the correct value is 11º 05.3’ W, or about 11.1º W.
Output screen from online GeoMag |
So the proper magnetic bearing of the sun is 123.5 + 11.1 = 134.6 M. The compass showed 135 C, so the deviation on heading 000 C is -0.4º which would be called 0.4º W.
We have learned that this compass is essentially correct at this heading, as it is difficult to be confident we have read the shadow bearing to this precision. But the main point is, this method has no other approximations in it. The result you get is as accurate as you can read the shadow bearing on the compass card.
This is a very powerful method. It would be instructive to try it once or twice whenever you see a nice shadow on your compass card, no matter where you are. Just write down the shadow bearing, the time, and the location, and your actual compass heading at the time. Then you can check the compass for that heading when you get back home. If convenient, record the data headed roughly north or south by compass and also roughly east or west by compass, and then you will have a pretty good analysis of your compass with a few minutes of paperwork at home.
I can’t believe that no one has asked this question, but what of the heading wasn’t exactly 0 magnetic ? I guess you have to subtract the course from the magnetic bearing to the sun?
ReplyDeleteOr, hmmm... does the ship’s course even matter, since the compass card won’t change? I.e. it doesn’t matter if the boat rotates under the compass card. Interesting...
ReplyDeleteSorry for the long delay. This must have come in before we learned how to turn on notices. The ship's heading does matter because you are checking the compass only on that specific heading, but that check is done the same way for all headings.
ReplyDelete