Monday, August 31, 2015

Sides of a Tropical Cyclone, Part 2 Meteograms.

In Part 1 of this topic, we looked at a way to study the wind and pressure on both sides of a tropical cyclone (TC) using any grib viewing program. There are many such programs available and the method outlined does not require any special features. Any of them could be used.  In this note we look at another way to study this that takes advantage of a special meteogram feature of the navigation and weather program Expedition.

In the presence of an approaching TC, we can judge where we are relative to its path by watching the wind speed, wind direction, and pressure from the perspective of being on one side of the storm's path or the other. In the Northern Hemisphere (NH) the right-hand side when facing in the direction of the storm's motion is called the dangerous side, whereas the left-hand is generally more manageable, at least if some distance away from the center, and it is called the navigable side. Part 1 included background on this and references.

The names are in large part based on the fact that the approaching winds on the dangerous side tend to push you into its path, whereas on the navigable side the approaching winds push you away from its path. The sea state on the dangerous side is also notably steeper and more chaotic.

A meteogram is just a plot of the wind, pressure, temperature, etc as a function of time. Time can be plotted forward (a forecast) or backward, a history.  The latter plots are a nice way to see, for example, that wind direction undergoes a prominent veer at the passing of any front.  Using a meteogram as a forecast we can show graphically the behavior expected on each side of a TC, as shown in Figure 1.

Hurricane Guillermo on Aug  3-5, 2105. The same example was used in Part 1. The background and meteograms are from Expedition, version 10.0.12.
Here we see in a much more direct manner what we discussed in Part 1. The blue stripe in each case marks the conditions we would observe from a stationary position over the day the system approached.  The two side points are about 70 nmi to each side, with all 3 being about 200 nmi off—which before any further discussion we have to say are all three very close to this system.  Such intense systems to not emerge suddenly, or if so, extremely rarely.  In this case we would have had at least 3 days earlier to know where this storm was going to be at this time. Thus how we ended up in one of these positions is an entirely different issue!  In short, we would have to say that we are primarily thinking about rare situations in which we did not have contact with the outside world and thus did not have the official forecasts.  But then, even with that assumption, we have to assume further that we did not have a $200 SW radio on board that would have told us the storm location and motion at least once every hour. Such a radio runs on batteries and is not dependent on the ships power.

Looking at conditions during the blue bar, we see first one important factor.  In all three locations we did not see much interesting at all for the first 6 hr, and that is because the closed isobars of the system had not yet reached us.

Once the closed system reaches us we see the expected behavior. On the right the wind builds and starts to veer. On the left we see the wind backing, but it actually falls off a bit, and in any event this far off the axis it never does build much.  This illustrates the value of getting as far as possible from the center of the storm as it passes.

In all three cases we see the pressure going down as the Low center approaches. There is more discussion in Part 1. The main goal here was to shown this new way of studying this behavior.  As it turns out, we have three very large systems in the Pacific right now, so I will try to grab some data and make a video of the use of these metorgrams.

There are other ways to generate meteograms using online resources, once you know the Lat-Lon and time you want. Most of these must be near live times, however. One example is https://ready.arl.noaa.gov/ready2-bin/main.pl  but I recall others that are easier to use.  I will add them here as i find them.









No comments: